Printed Page:-	Subject Code:- AEC0502
Timed Luge.	Roll. No:
NOIDA INSTITUTE OF ENGINEERING A	AND TECHNOLOGY, GREATER NOIDA
(An Autonomous Institute Aft	filiated to AKTU, Lucknow)
B.Te	
SEM: V - THEORY EXAM	· · · · · · · · · · · · · · · · · · ·
Subject: CMOS Digit Time: 3 Hours	Max. Marks: 100
General Instructions:	Max. Marks. 100
IMP: Verify that you have received the question p	aper with the correct course, code, branch etc.
1. This Question paper comprises of three Section	s -A, B, & C. It consists of Multiple Choice
Questions (MCQ's) & Subjective type questions.	I am minter to me I mid a communication
2. Maximum marks for each question are indicate 3. Illustrate your answers with neat sketches when	v i
4. Assume suitable data if necessary.	ever necessary.
5. Preferably, write the answers in sequential order	er.
6. No sheet should be left blank. Any written mate	rial after a blank sheet will not be
evaluated/checked.	
SECTION-A	20
1. Attempt all parts:-	20
1-a. What does MOSFET stands for? (CO1)	
(a) Metal Oxide Semiconductor Field E	
(b) Modern Oxidized Silicon based Fiel	
(c) Modern Oxidized Silicon based Ford	
(d) Metal Oxide silicon Field Equivalen	
1-b is normally referred to a	
(a) JFET	
(b) UJT	
(c) Depletion MOSFET	
(d) Enhancement MOSFET	
1-c can pass a logic 1 perfectly	y, but cannot pass a logic 0 perfectly.
${(CO2)}$	
(a) NMOS transistor	
(b) PMOS transistor	
(c) CMOS transistor	
(d) None of these	
1-d can pass a logic 0 perfectly perfectly. (CO2)	y, but cannot pass a logic 1
(a) NMOS transistor	

	(b)	PMOS transistor	
	(c)	CMOS transistor	
	(d)	None of these	
1-e.	S	witch logic is based on (CO3)	1
	(a)	Pass transistors	
	(b)	Transmission gates	
	(c)	Pass transistors and Transmission gates	
	(d)	Design rules	
1-f.	In	n Pseudo-nMOS logic, n transistor operates in (CO3)	1
	(a)	Cut-off region	
	(b)	Saturation region	
	(c)	Resistive region	
	(d)	Non saturation region	
1-g. Circuit desig		fircuit designers need circuits. (CO4)	1
	(a)	tighter	
	(b)	smaller layout	
	(c)	decreased silicon area	
	(d)	all of the mentioned	
1-h.		lierarchical decomposition of a large system in VLSI design is	1
		alled(CO4)	
	(a)	Modularity	
	(b)	Regularity	
	(c)	Locality	
1.	(d)	Decomposability	
1-i.		an ASIC stands for (CO5)	
	(a)	American Specific Instruction code	
	(b)	Application Specific Integrated Circuit	
	(c)	Application Specific Instruction Code	
1 .	(d)	American Standard input Code	
1-j.		Which Hardware description language is used for ASICs? (CO5)	
	(a)	system Verilog	
	(b)	system c	
	(c)	C++	
2 A	(d)	verilog	
	-	all parts:-	_
2.a.		Why is MOSFET a voltage controlled device? (CO1)	2
2.b.		Praw the truth table of half-adder. (CO2)	2
2.c.	V	What are transmission gates? (CO3)	9

2.d.	What do you understand by design hierarchy in VLSI? (CO4)	2
2.e.	What are the goals of floorplanning? (CO5)	2
SECTIO	ON-B	30
3. Answ	er any five of the following:-	
3-a.	Differentiate the enhancement-type and depletion-type MOSFET. (CO1)	6
3-b.	Derive the expression for drain current in linear region of MOSFET. (CO1)	6
3-c.	Explain multiplexer and demultiplxer circuits. (CO2)	6
3-d.	What are the applications of sequential circuits? (CO2)	6
3.e.	Realize the OR and NOR logic functions using differential CMOS logic. (CO3)	6
3.f.	Define Hierarchy by taking the example of 16 bit full adder. (CO4)	6
3.g.	Draw and explain in brief the ASIC design flow. (CO5)	6
SECTIO	<u>ON-C</u>	50
4. Answ	er any one of the following:-	
4-a.	What do you mean by drain-induced barrier lowering (DIBL)? Explain with the help of diagram. (CO1)	10
4-b.	Why scaling is required in VLSI chips? And also explain different scaling methods of MOSFET. (CO1)	10
5. Answ	er any one of the following:-	
5-a.	Derive the expression for sum and carry output of full adder using truth table and realize the full adder circuit using CMOS logic. (CO2)	10
5-b.	Design 4:1 multiplexer using complementry CMOS logic. (CO2)	10
6. Answ	er any one of the following:-	
6-a.	Realize the function $F = A' + BC'$ using pass-transistor logic circuits. Why is it necessary to restore the output voltage level of a pass-transistor circuit? (CO3)	10
6-b.	Draw and explain the operation of domino CMOS logic based 4-input NAND gate. Briefly mention the advantages and disadvantages of domino CMOS logic over static CMOS logic. (CO3)	10
7. Answ	ver any one of the following:-	
7-a.	Draw the flow chart of VLSI Design flow and explain the operation of each step in detail. (CO4)	10
7-b.	Explain the detailed logic configurable block Architecture of FPGA. (CO4)	10
8. Answ	ver any <u>one</u> of the following:-	
8-a.	Explain in detail the steps involved in ASIC design. (CO5)	10
8-b.	Explain in detail the goals and objectives of placements also discuss the i/p's and o/p's of placement? (CO5)	10